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Abstract. In financial market risk measurement, Value-at-Risk (VaR) techniques have proven to be a very
useful and popular tool. Unfortunately, most VaR estimation models suffer from major drawbacks: the log-
normal (Gaussian) modeling of the returns does not take into account the observed fat tail distribution and
the non-stationarity of the financial instruments severely limits the efficiency of the VaR predictions. In this
paper, we present a new approach to VaR estimation which is based on ideas from the field of information
theory and lossless data compression. More specifically, the technique of context modeling is applied to
estimate the VaR by conditioning the probability density function on the present context. Tree-structured
vector quantization is applied to partition the multi-dimensional state space of both macroeconomic and
microeconomic priors into an increasing but limited number of context classes. Each class can be inter-
preted as a state of aggregation with its own statistical and dynamic behavior, or as a random walk with
its own drift and step size. Results on the US S&P500 index, obtained using several evaluation methods,
show the strong potential of this approach and prove that it can be applied successfully for, amongst other
useful applications, VaR and volatility prediction. The October 1997 crash is indicated in time.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 89.70.+c Information science

1 Introduction

Faced with volatile financial markets, both banks and non-
financial companies are investing considerable resources in
risk management systems. As a result, risk management is
increasingly becoming a quantitative discipline. According
to international standards elaborated by multinational or-
ganizations, most notably the Bank for International Set-
tlements, banks and other financial intermediaries have
to maintain capital against a number of potential risks, of
which counterparty risk, market risk and interest rate risk
are the most important ones. Most countries and financial
supervisors have translated these guidelines into their fi-
nancial legislation and their regulatory practice. The ul-
timate goal is to guarantee a sufficient degree of financial
stability, in view of the potential contagion effects of situ-
ations of financial distress in parts of the financial sector
and their negative spill-overs to the real sector.

The approach adopted for the calculation of capital
adequacy standards has traditionally been rule-based. In
such a framework, the types of risks are identified and
quantified within each institution according to established
methods of computation, and a predetermined level of
capital has to be allocated. Increasingly, however, it has
become clear that this framework may induce regulatory
arbitrage whereby innovative financial contracts are used
to migrate certain risks to the risk category with the lowest
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capital adequacy requirements [1,2]. Moreover, regulators
and supervisors are confronted with a rapidly changing
competitive financial environment in which both the or-
ganization of financial intermediaries (e.g., local commer-
cial banks versus internationally diversified financial con-
glomerates) and the types of risk (e.g., operational risk
versus market risk) are shifting. In this setting, interna-
tional regulators and supervisors are gradually moving
from a purely rule-based approach of capital adequacy
to a more market-based approach in which eligible banks
are allowed to use good-practice internal risk management
systems to calculate the optimal level of capital coverage.

In the area of market risk, value-at-risk (VaR) models
are widely used by financial institutions and non-financial
companies [3]. Market risk are the losses arising from ad-
verse movements in market prices (e.g. equity prices) or
market rates (e.g. interest and exchange rates). Value-at-
risk is a summary statistical measure of possible portfo-
lio losses under normal market conditions. Losses greater
than the VaR are suffered only with a pre-specified proba-
bility, assuming a specific distribution of the relevant mar-
ket variables. The intuitive appeal of VaR estimates arises
from the fact that it provides a consistent measure of risk
across different positions and risk factors, taking into ac-
count the correlation structure between the risk factors.
Since the VaR methodology yields the maximum amount
that can be lost with a particular confidence level over
a specific time period, the VaR forecast can be used to
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determine capital requirements at the firm level. The ac-
curacy of the VaR estimates under different methodologies
is of crucial importance since there is a cost associated
with holding both too low and too high levels of capital.

This paper presents some results of using context mod-
eling, a state-of-the-art statistical data compression tech-
nique, for increasing the accuracy of the VaR forecast.
Data compression is the science that aims at finding the
shortest equivalent representation of a given data stream.
Both in text and image compression, context models are
statistical models that have shown to be very efficient
[4,5]. Instead of estimating one comprehensive probabil-
ity distribution function for the whole text or image, it
builds multiple distributions in parallel based upon the
value of the context. The probability associated with each
new data sample is then determined from the distribu-
tion of the samples corresponding with the same context
class. Typically, in text compression, the context is the
combination of a limited number of nearby characters.

The use of context modeling is intuitively appealing.
By defining a set of priors that are theoretically or empiri-
cally found to be informative in forecasting future market
movements, different context classes can be defined. The
set of priors should reflect the different forms in which
market risk can occur. Examples are changes in interest
rates, exchange rates and business cycle conditions. Every
context is designed to describe a combination of priors and
implies a possible state of the world, or, in physical terms,
a state of aggregation. Past market data is used to define
a relevant set of contexts. New observations of the priors
automatically lead to the identification of a specific con-
text class and a specific return distribution for that class.
A simple example is that when the yield curve flattened in
the past period of observation, and this is the only prior,
the forecasted VaR will depend on the past observations
of returns in the cases where the yield curve also flattened
in the preceding period.

In this paper, context modeling is applied to capture
the dynamics of the market risk associated with move-
ments in the US stock market. A past window of several
thousand daily stock market return observations is used as
a data-training frame to form the contexts and delimit the
distributions. Once the contexts are defined, the present
state of the world can be identified and the VaR forecast
can be estimated from the accompanying distribution that
is derived from the training period. The analysis is per-
formed on a daily basis. The choice of a forecast horizon is
somewhat arbitrary, but a daily frequency is a reasonable
choice because it can be assumed that the rebalancing of
equity portfolios by market participants follows a similar
pattern [6]. Moreover, financial supervisors also require
banks to calculate VaRs on a daily basis since the high
degree of liquidity of the US stock and derivatives mar-
kets allow investors to close risky positions rapidly.

A second part of the paper deals with the evaluation of
the accuracy of VaR estimates. Often, the supervisory au-
thorities require that the estimated VaR produced by the
internal risk management system of banks is multiplied by
a factor to determine the minimum required capital [7].
The standard method prescribed for banks is to count the

number of exceptional observations given the VaR fore-
casts over a horizon of 250 trading days. Other methods
have been developed, including the minimization of com-
plicated loss functions. This paper also evaluates the fore-
casting capabilities of the VaRs obtained through context
modeling. An important question in finance is whether
forecasting models are able to predict periods of higher
and lower volatility. In the case of VaR, periods of higher
volatility indicate that the required capital should be in-
creased.

Section 2 outlines the basic concepts of information
theory and context modeling. It also shows the analogy
between the goals of financial modeling and data com-
pression. In Section 3, the tree-structured vector quantiza-
tion algorithm, which is needed for partitioning the space
of priors, is described. Section 4 deals with the different
evaluation criteria used in this research and Section 5 de-
scribes the data and reports the test results. Section 6
concludes.

2 Context modeling basics

2.1 Risk analysis and data compression

The series of daily returns {yt} of a financial instrument
can be regarded as a realization of an underlying stochas-
tic process {Yt}. Precise knowledge of this process is of
fundamental importance to predict future evolution and
to quantify future risk. Unfortunately, because only one
realization of the process is known, properties such as sta-
tionarity (or quasi-stationarity) and ergodicity need to be
assumed in order to allow significant predictions.

The purpose of risk analysis of financial instruments is
to determine the maximal amount of money that can be
lost under a certain specified probability p. This amount is
usually called the “Value-at-Risk”. One way to achieve the
goal is to efficiently estimate the underlying probability
density function (pdf) of the return Yt+h on day t + h
based on all financial and other information accessible on
day t. Typically, the probability p will be 1% or 5% and
the horizon h will be 1, 5 or 25 days, corresponding with
a day, a week and a month respectively.

This kind of statistical prediction, where a complete
pdf is estimated rather than the most likely or expected
value, is exactly the same goal of data compression. The
state-of-the-art techniques in data compression are statis-
tical by nature. Based on an environment called the “con-
text”, a pdf of the upcoming new symbol is constructed
and used to drive an entropy coder, which actually gen-
erates the compressed bitstream [4,5]. In the case of text
compression, this context can be the combination of the
previous two characters, while in the case of image com-
pression, it can be a combination of the rounded difference
and sum of the upper and left pixel.

Though the fundamental goal in risk analysis and data
compression may be identical, there are significant differ-
ences too. In data compression, millions or even billions
of data samples (characters for text compression of pix-
els for image compression) are available, while in financial
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modeling the number of daily samples is limited to thou-
sands. Therefore, the risk of data snooping, negligible in
data or image compression, is of fundamental importance
in financial modeling [8]. Another difference is that in data
compression, the overall correctness of the entire pdf is im-
portant, while for risk analysis only the tail distribution
is taken into account. Also, the only predictive factors
in text compression are the neighboring text characters,
while in financial modeling, there exists a multitude of
factors, both microeconomic and macroeconomic, which
may have predictive power. Finally, in data compression,
in order to be useful, the compression algorithms must
satisfy certain speed and memory consumption criteria,
which are almost non-existent for financial modeling.

2.2 Information theory

2.2.1 Entropy of a random variable

The “entropy” H of a discrete random variable Y is de-
fined asH(Y ) = −

∑
y∈Y Pr[y] log Pr[y], where Y is the set

of all possible values Y can take, and Pr[y] is the proba-
bility that Y takes the value y [9]. The entropy cannot be
negative and is always smaller than or equal to log(l(Y)),
where l(·) indicates the number of elements of a set. It is a
measure of the randomness or unpredictability of the ran-
dom variable. It is also a lower bound for the achievable
expected length per symbol when some type of entropy
coding is applied.

The joint entropy of two random variables Y and Z
is defined as H(Y,Z) = −

∑
y,z Pr[y, z] log Pr[y, z]. Fur-

thermore, the conditional entropy H(Y |Z) is defined as∑
z Pr[z]H(Y |Z = z). It can be shown that H(Y |Z) ≤

H(Y ), with equality if and only if Y and Z are indepen-
dent. This property is often referred to as “conditioning
reduces entropy”: the randomness or unpredictability can
only decrease if information about other random variables
is used.

2.2.2 Entropy rate of a stochastic process

For a stochastic process {Yt}, the “entropy rate” is de-
fined as H(Y) = limt→∞H(Y1, Y2, . . . , Yt)/t, when the
limit exists. This definition is based upon the observation
that, for independently and identically distributed random
variables {Yt}, the joint entropy H(Y1, Y2, . . . , Yt) grows
linearly with t. The entropy rate is a measure of the av-
erage amount of uncertainty about each random variable
Yt, when all {Yt} are considered simultaneously.

A related quantity for the entropy rate is defined as
H ′(Y) = limt→∞H(Yt|Yt−1, Yt−2, . . . , Y1), when the limit
exists. It can be shown that, for a stationary stochastic
process, the limits for both H(Y) and H ′(Y) exist and are
equal.

2.2.3 Entropy in physics and other fields

This probabilistic notion of entropy is also known as
Shannon’s “source entropy” and it was defined and used
successfully in the fields of information theory, communi-
cation theory, and coding theory.

The actual roots of entropy lie in the field of ther-
modynamics through the notion of “thermodynamical en-
tropy”. This concept was later elaborated in statistical
mechanics, which connected the macroscopic property of
“physical entropy” and the number of microscopic states
of a system through Boltzmann’s formula S = k lnΩ. The
relationship between information theory and thermody-
namics has been discussed extensively by Brillouin [10]
and Jaynes [11].

Later on, Shannon’s probabilistic notion of entropy
was imported by Kolmogorov into the field of dynami-
cal systems where the “metric” or “Kolmogorov entropy”
is defined [12].

Kolmogorov, Solomonoff and Chaitin independently
further elaborated this concept to the field of logic and
the theory of algorithms by defining the “algorithmic” or
“descriptional” entropy (also known as the Kolmogorov
complexity). Algebra uses the notion of “galois entropy”.

All notions of entropy are similar in that they all aim
at quantifying the amount of randomness, unpredictabil-
ity or incompressibility of the system under investigation.
Though they are all defined in different fields, some kind
of numerical equivalence can be shown.

2.3 Context modeling

The goal of both data compression and financial model-
ing is to estimate, given only one data sample series, a
pdf that allows to predict the upcoming values. The effi-
ciency of the modeling can be quantified by the achieved
entropy (or compression rate). If a good probability model
is applied, then the entropy will be lower. The fact that
conditioning reduces entropy is the fundamental principle
of context modeling: conditioning the random variable on
other random variables, which are not independent, can
be an efficient way to achieve a reduction in entropy. The
other random variables are called the “priors” and a spe-
cific combination of priors is called a “context”. Usually,
the contexts are grouped into “context classes” to avoid
the (almost) continuous nature of the context space.

Of course, in lossless data compression, the context
class must be known to both encoder and decoder, so only
priors from the past may be used. Moreover, those priors
are limited to the values of the already encoded characters
or pixels. In financial modeling, only the first condition
remains: it is obvious that no priors from the future can
be used. However, among the priors, not only the past
values of Y but also other microeconomic and macroeco-
nomic values Z may be used. Hence, the key idea of con-
text modeling is to substitute the probabilities Pr[yt+h] by,
typically, the probabilities Pr[yt+h|ct]. The context class
ct is derived from the prior vector zt through the context
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mapping function C. Hence, the context mapping func-
tion maps a context z ∈ Z, which is a vector of priors,
onto a context class c ⊂ Z. The set of all context classes
is denoted as C.

2.4 Practical implementation

In practice, only one data sample series {yt} of a partic-
ular asset or index {Yt} is given and a multitude of de-
pendent priors {Zit} are available for building the context
classes. Assumptions such as stationarity and ergodicity
are made to estimate the probabilities of the underlying
model. Specifically in financial modeling, the way the con-
texts are constructed and adapted is of great importance.
A context model can be regarded as a collection of a num-
ber of separate probability models without contexts run-
ning in parallel, where one probability model is associated
with every context class.

2.4.1 Probability model without contexts

In the case of non-parametric probability models, observed
counts of samples are used to estimate the probabilities.
For every value y0 ∈ Y, the probability Pr[yt+h = y0] is
approximated by nt(y0)/

∑
y∈Y nt(y), where nt(y) repre-

sents the number of times the value y has occurred in the
time-interval [0, t]. Therefore, a practical implementation
will count the occurrences of every symbol y ∈ Y and use
these to estimate the probabilities. Initially, theses counts
are initialized to zero and after a sufficient number of sam-
ples has been parsed, the array of counts will reflect the
true pdf. This approach is often called the “historical”
approach.

If the probability model is parametric, a class of dis-
tributions is assumed and only the parameters discerning
these distributions are estimated. Very often, a lognormal
distribution is presupposed and the mean µ and the vari-
ance σ2 are estimated from the samples.

The cumulative density function is constructed from
the derived pdf and used to predict the VaR. Often, the
samples will be weighted by a time-varying factor so that
older samples have less importance.

2.4.2 Probability model with contexts

If context modeling is used, instead of one pdf, multiple
pdf’s are estimated in parallel, and, based upon the value
of zt, each event is associated with one of these pdf’s.

In the case of non-parametric modeling, for each value
c ∈ C, the probabilities Pr[yt+h = y0|c] are approximated
by nt,h(c; y0)/

∑
y∈Y nt,h(c; y), where nt,h(c; y) is defined

as the number of times in the interval [0, t] where a context
zk at time k, belonging to class c, was followed by a sample
y at time k + h. In the case of parametric modeling, for
each value c ∈ C, parameters are estimated based on the
samples corresponding with that particular context class.

2.5 Limitations

The application of probability models to real-life data
samples suffers from severe shortcomings. First of all, for
some types of financial data, the assumed stationarity does
not always hold. Based on Timmermann [13], who explores
the relationship between volatility clustering and regime
switches in time-series models, it can be argued that part
of the non-stationarity may be caused by volatility cluster-
ing. In the finance literature, conditional volatility models
and change-point models, among others, have been used
to remedy this shortcoming. It has become standard prac-
tice to model asset returns as a mixture of distributions
and to assume that they are conditionally normal [8].

A first step to solve this intricate problem is to trans-
form the price series {Yt} into a set of equivalent values
with approximately time-invarying support. For simplify-
ing the calculation of consecutive price differences, usually
the “continuously compounded returns” (also called “log
returns”) Rt = log(Yt/Yt−1) are used. However, statistical
analysis has shown that this series still is non-stationary.
Therefore, each referenced data sample associated with a
context is multiplied by a weight w(δt), which is a mono-
tonically decreasing function of the time difference δt of
the referenced sample and the current time.

The time difference δt can be measured in an “abso-
lute” way or in a “relative” way. If measured in an abso-
lute way, the arithmetic difference between the two time
indices is used. If measured in a relative way, the samples
within the corresponding context class are sorted by time
index and the difference in order index is taken. For exam-
ple, if the referenced sample happened 10 days ago, but
it was the previous sample within that particular context
class, then δt takes the value of 10 in the case of absolute
weighting and 1 in the case of relative weighting. Typi-
cally, the weighting function w(δt) = λδt with 0 < λ ≤ 1
is used.

Moreover, in our application, the context-dependent
distributions are conditioned on a parameter which is it-
self random and which is modeled by the state of the priors
defining the context. Consequently, rather than identify-
ing whether the stock return series are stationary in the
mean or in the variance, the states of the world (context
classes) in which the expected return and the volatility
can reasonably be assumed to be constant are generated
endogenously.

As such, removing the non-stationarity is achieved by
introducing adaptivity into the context model in multi-
ple ways: by using an alternative representation {Rt}, by
weighting the data samples according to their age, by sep-
arating the samples into distinct context classes, and, by
introducing new context classes which are to be trained
with recent data.

Another severe shortcoming of the model is that, since
the model is trained on previous samples, it is only able
to recognize situations that have already happened once
before. This aspect is twofold: firstly, highly unlikely situ-
ations will be considered as impossible, so they will not be
predicted and secondly, if such a highly unlikely event has
occurred and it is used for training, it will be regarded as
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a typical situation. Especially in the case of risk analysis,
this puts heavy constraints on the efficiency of the VaR es-
timation. For this reason, we have omitted the 1987 crash
in most of our experiments.

3 Tree-structured vector quantization

The partitioning of the context space imposes some addi-
tional training problems. Since the whole set of available
data samples is to be divided over a number of context
classes, less samples are available for each context class.
But to be statistically significant, the occupation of every
context class should be high enough. This is even more so
for risk analysis, because then, the focus of the modeling
is on extreme value analysis, which is described by the less
populated tails of the distribution. The problem of hav-
ing context classes with a level of occupation that is too
small, is often referred to as the “context dilution” prob-
lem. While thousands or even millions of context classes
can be applied successfully in image compression [14], only
about tens or maybe hundreds are to be used in financial
modeling.

On the other hand, the dimensionality of the space of
priors tends to be high. A simple context mapping func-
tion, such as the value of the previous character in text
compression, cannot be used: a simple division of each
prior into a limited number of distinct intervals gives rise
to an exponentially growing number of context classes.
This “curse of dimensionality” is a problem that calls for
an intelligent partitioning algorithm of the space of the
priors.

While processing the first few samples, the model has
absolutely no statistically significant information for mak-
ing predictions. Therefore, a training phase processing a
first part of the samples is started. During this first phase,
no predictions are made and initial statistics are gathered
exclusively for training. After this phase, the model enters
the evaluation phase, where training is combined with ac-
curately predicting and evaluating the VaR. During this
second phase, a VaR prediction is made for each sample
and all data up to the previous day are used for training.

3.1 Context tree partitioning

Typically, if the model is trained using daily samples cov-
ering a period of about 30 years, between 2000 and 8000
samples are available. To provide statistically significant
tails of the pdf, at least about 100 to 200 samples are
needed for each context class. In total, at most about 10
to 40 context classes are to be created. If about 10 priors
were used, even a simple division of each prior into two in-
tervals would give rise to more than 1000 different context
classes.

This problem is solved in two steps. Firstly, the prior
space is partitioned into context classes c ∈ C and each
context z is mapped onto one context class C(z) based
on a minimum distance criterion. This context mapping
function C is a type of vector quantization [15]. Secondly,

the context classes are organized into a growing tree struc-
ture, which can change on a daily basis. If new context
classes are created in such a way that they take into ac-
count the corresponding returns, the advantage is that,
after sufficient training, the structure of the classes may
reveal “hidden” information about the predictability of
the returns.

The processing of an individual sample consists of two
steps. Firstly, its context is determined and mapped onto
a context class, and the risk for the future sample is es-
timated using the corresponding pdf. Secondly, the infor-
mation contained in the co-occurrence of the context and
the sample is fed back into the probability model.

3.1.1 Context mapping and VaR estimation

Let Z be the prior space. For each context class c ∈ C, a
center of mass z̄c =

∑
j:zj∈c zj/l(c) can be determined.

To make predictions about the future return Rt+h, the
context zt ∈ Z is first determined. Of course, only in-
formation available at time t can be used, not only for
making predictions, but also during the training stage.

The context zt is then mapped onto the context class
c for which ||z̄c − zt|| is minimal. The pdf corresponding
to that context class is used to estimate the VaR. The pdf
can either be parametric or non-parametric.

3.1.2 Observation feedback

At time t + h, the combined observation of the return
rt+h with the context zt is the sort of information the
context model is trained with, so this observation must be
entered back into the model. For this purpose, the context
zt is added to the associated context class c and a new
center of mass z̄c is calculated. The pdf corresponding to
that context class is adapted. In parametric modeling, new
parameters are calculated for the enlarged set of contexts.
In historical modeling, the observation is added to the list
of observations. This implies that the state in the prior
space corresponding to a particular context class is not
constant in time. After incorporating the observation into
the model, the model checks if the context tree structure
needs being adapted, which is achieved by splitting nodes.

3.2 Splitting algorithm

In the beginning, the context tree consists of a single root
node and all samples are mapped onto the same context
class. When a specified splitting condition (the “maturity
criterion”) is met, a context node splits into a number of
child nodes (typically two). Usually a node is split when-
ever a certain level of occupation (i.e. a specified number
nm of associated samples) is reached. The old node be-
comes a parent node and its associated samples are dis-
tributed over the two child nodes. After a parent node
has split, it is no longer functional. Children nodes can be
created from a given parent node in a few distinct ways:
“random node creation”, “fast min-max node creation”
and “full min-max node creation”.
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3.2.1 Random node creation

Associated with a parent node c, there is a center of mass z̄
and a list of associated context samples {zj}. In the case of
“random node creation”, the two child nodes are created
by adding and subtracting a randomly generated small
disturbance vector ε ∈ Z to the parent center of mass.
Two new initial attractors, z̄ ± ε, have thus been created
and each of the samples {zj} is classified into the child
node with the closest center of mass. Since the Euclidean
distance measure is applied, the different dimensions of
the prior space need to be normalized. After distributing
the samples over the child nodes, the initial attractor of
each child node is replaced by the effective center of mass,
which can now easily be determined.

3.2.2 Fast min-max node creation

Using the random node creation splitting technique, the
values of the returns rt+h are not taken into account and
vector quantization is performed only in the prior do-
main. However, the combination of the observed returns
together with the observed contexts of a specific context
class, might also carry useful information. Therefore, in
the case of “fast min-max node creation”, the observed
returns are also taken into account. Moreover, in this case
the final context tree might reveal information about the
significance of the distinct priors. From all contexts {zj}
belonging to samples of the parent context class, the ones
with the extreme corresponding returns rt+h are deter-
mined and used to create two child nodes. Let r+ and r−
be the maximal and minimal return respectively and let
z+ and z− be the corresponding contexts. These are then
used as the two initial attractors of the two child nodes.
As in the case of random node creation, each context is
classified into one of the child nodes depending on the
smallest distance criterion. After classification, each ini-
tial attractor is replaced by a new center of mass and the
parent node is no longer used.

3.2.3 Full min-max node creation

The above technique has more potential than the random
technique because the information about the returns is
fed back into the quantization process. Unfortunately, it
is very sensitive to outliers and it assumes a certain degree
of monotonicity. These problems can be avoided by using
every associated return to classify the contexts. In the
case of “full min-max node creation”, a threshold return
r̂ is defined as (r+ + r−)/2. Each context zj originally
corresponding with the parent node is classified into one of
the child nodes, depending on whether the corresponding
return rj > r̂ or rj < r̂. After classification, a center of
mass corresponding with each child node is calculated.

3.3 Additional improvements

Two additional improvements to the growing context tree
algorithm are suggested in this paper. One is the “reverse

model restart” which aims at decreasing the consequences
of the non-stationarity of the data by enlarging the ef-
fect of the most recent data on the growing of the context
tree. The other improvement is the “feedback mechanism”
which aims at reducing training time and removing repet-
itive over- or underestimation.

3.3.1 Reverse model restart

Normally, the context tree is built starting from the first
samples and adopts itself to the most recent events. How-
ever, since the initial node splits have initiated the main
branches of the tree, the most important decisions with
respect to the structure of the tree are based upon the
oldest samples. Therefore, the modeling might improve if
more recent events are used first. This goal is achieved
if “reverse model restart” is periodically applied with pe-
riod tr. After every period, the order of the samples is
reversed and the context tree is completely rebuilt. Most
recent samples decide on the initial branches and the old-
est samples are used for the fine-tuning. It is clear that
the order of the processing of the samples is a tradeoff
because ideally, the most recent samples should be used
for both initial training of the model and for fine-tuning.

3.3.2 Feedback mechanism

If the prediction efficiency is entered back into the model,
the dynamics of the training can be changed dramatically.
Also, consistent misprediction due to changing statistical
behavior can be intercepted and avoided. The “feedback
mechanism” adds an artificial prior to the list of economic
priors. This additional prior can be regarded as a binary
flag which indicates whether the previous sample exceeded
its prediction or not. Of course, this variable too is nor-
malized before it is incorporated into the context space.

3.4 Discussion: non-linear modeling

The predictability of the presented modeling technique
differs from the one encountered abundantly in non-linear
science in multiple ways.

Common non-linear models use a system of non-linear
differential equations that comprises a few parameters and
a few variables. The time variable is continuous by nature
but is usually discretized to allow numerical solutions.
The input of the real world consists of parameters and
boundary values (usually the present state of the system).
The solution to the system is deterministic in theory but
chaotic in practice. The system of differential equations
itself is time independent and explicitly describes the dy-
namics.

The proposed context modeling approach, which is a
successful technique from the field of data compression,
is much more generic since more types of behavior can
be modeled. The main difference compared to the con-
ventional model lies in its stochastic approach: multiple
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outcomes are possible and the probability of each of these
outcomes is estimated on statistical grounds. The time
variable is discrete and the real world input is much
greater since all the information of the system is ob-
tained by training. Only a few assumptions about station-
arity and continuity of the probability density function
are made. The signal is described as a mixing of multiple
stationary sources. The parameters of the model are opti-
mized by an exhaustive search. The model is time depen-
dent and describes the dynamics in an implicit way. Since
so many types of behavior can be modeled and so few as-
sumptions are made, the system needs large amounts of
data in order to make adequate predictions. The training
is similar to Markov modeling, but the approach differs
because the model does not estimate state transitions but
rather uses external information (the priors) to construct
the states.

4 Evaluation techniques

Though evaluating VaR estimates is difficult because most
tests have limited power, recently some improved meth-
ods have been proposed [7]. In this paper, we basically
use three types of evaluation measures: the average hit
ratio, a χ2-distance criterion with respect to the binomial
distribution and a cost and a loss function.

Firstly, the binary random process {X(t)} is defined as
1 if {Y (t)} is smaller than the predicted VaR, and 0 oth-
erwise. It can be interpreted as an indicator whether the
loss exceeds the absolute value of the VaR, or similarly, as
an “exception” flag. If the statistical model captures all
deviations from the ideal and perfectly matches the ob-
served data, then for every t, {X(t)} is a random variable
which takes the value 1 with probability p, and 0 with
probability 1− p.

Secondly, the entire evaluation period, covering m
samples, is divided into q non-overlapping windows of l
samples each. For every window i, the random variable
Ti is defined as

Ti =
l−1∑
k=0

X(il+ k), (1)

and, if perfect modeling is achieved, its expected value
equals pl. Moreover, the set of random variables {Ti} is
distributed independently and identically and for every i,
the random variable Ti obeys the binomial distribution

P [Ti = j] =

(
l

j

)
pj(1− p)l−j . (2)

These values are used to construct three sets of evalua-
tion criteria: (1) “min-mean-max” statistics, (2) the χ2

statistic and (3) cost and loss functions.

Min-mean-max statistics

The first set of criteria involves the observed values for
Ti. The observed minimum m− = mini{Ti}, the ob-
served mean m̄ =

∑
i Ti/q, and the observed maximum

m+ = maxi{Ti} are three interesting test statistics. Their
distributions are given by:

Pr[m− < j] = 1−

 l∑
k=j

Pr[T = k]

q

, (3)

Pr[qm̄ = j] =

(
ql

j

)
pj(1− p)ql−j , (4)

Pr[m+ ≥ j] = 1−
(
j−1∑
k=0

Pr[T = k]

)q
. (5)

Ideally, if the heteroskedasticity is intercepted by the mod-
eling, the mean should equal pl and the maximum should
not be too large. For low p, the observed minimum is a
useless statistic.

χ2 statistic

The hypothesis that the observed variable Ti obeys
the binomial distribution, as given by equation 2, can be
tested using Pearson’s χ2 statistic [16,17]. Since T can
take values in the interval [0, l], the χ2 test statistic is
given by

χ2 =
l∑

k=0

(n(k)− e(k))2

e(k)
, (6)

where n(k) and e(k) are the observed and expected num-
ber of windows where Ti = k respectively, according to
equation (2). The statistic has ν = l degrees of freedom.

Cost and Loss functions

Previous criteria merely use counts of events where
the VaR was exceeded and have no quantitative power.
An artificial 1% VaR defined as +∞ on every first day and
−∞ for every other 99 days would achieve great score,
but does not meet the requirement of a financially useful
VaR. Based on the idea of regulatory loss functions [7],
both a loss and a cost function are used as an evaluation
criterion. The loss and the cost functions are based on
exceptional and regular observations respectively.

The loss L is defined as

L =
m∑
t=1

H(VaRt − rt)(VaRt − rt)2, (7)

whereH(x) is the Heaviside function, defined as 1 if x > 0,
1/2 if x = 0, and 0 if x < 0. The loss function by Lopez is
similar, but adds the number of exceptions, so LLopez =
L+

∑
tX(t) = L+qm̄. Both loss functions are based only

on the “exceptional” observations where the loss exceeds
the VaR, i.e. where rt < VaRt. The loss function is a
measure of the loss involved in underestimating the risk
capital.
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The cost function C, is defined as

C =
m∑
t=1

H(rt −VaRt)(rt −VaRt), (8)

so the quadratic form is replaced by a linear form and
it only takes into account the “regular” observations, i.e.
where rt > VaRt. It expresses the cost involved in overes-
timating the risk capital. Neither the cost nor loss func-
tion can be interpreted as a standalone criterion. They
must be evaluated together, and in combination with the
previously introduced criteria. Also, a financial institution
might decide to assign different weights to cost and loss
functions.

5 Experimental results

The proposed statistical model was implemented in C++
and tested on both Microsoft Windows NT and Linux
platforms. Depending on the algorithm options and the
choice of the parameters, a typical run on about 8000
samples takes between 10 and 120 seconds. In the cur-
rent implementation, about 2 megabytes of memory are
needed.

5.1 Financial data

The data compression technique is applied to the daily
return series of the Standard & Poor’s 500 US stock in-
dex from October 1969 until December 1999. Since this
index contains the largest stocks, and thus represents a
major part of the total market capitalization on the New
York Stock Exchange, it can be assumed to capture the
associated market risk.

A total of 8089 samples were available for training
and evaluation. The first 200 samples were not used for
training because of initialization conditions (e.g. for ob-
taining useful values of long-term priors). Sample 201 to
2000 (covering the period October 7, 1969 until August 30,
1976) were used for training only. Samples 2001 to sample
8089 (covering the period August 31, 1977 until December
31, 1999) were used for both training and validation. Of
course, only data from the past is used to make predic-
tions. Not all priors were available from the beginning of
the training period; they are substituted by zero in those
cases. Hence, the total number of evaluation samples is
m = 6089. If windows of width l = 100 are used, a total
of q = 60 windows is available for evaluation.

To avoid the training problems that may arise from
highly unlikely events, a volatile period covering 100 re-
turns around the 1987 crash was omitted from the data. In
the last paragraph, some numerical results are presented
obtained by taking the crash into account.

Different priors are used to construct the contexts. The
choice of the priors is based on theoretical models and
empirical findings reported in asset pricing research. A
number of influential asset pricing studies have concluded

that stock returns are driven both by fundamental and
technical factors [18].

First there is evidence of persistence in daily returns,
particularly in the short run, and mean reversion over the
medium term [8]. We use four technical variables to cap-
ture these effects and define them as the momentum pri-
ors. The first three variables are intended to reflect the
short-run dynamics and include the one-day, one-week and
one-month past returns. The fourth technical factor is the
degree of expected volatility at a given date, measured as
the dispersion of the stock market returns over the past
100 trading days. This conditioning variable is calculated
as the ratio of the difference between the maximum level
of the index and the minimum level of the index in the
100-day window relative to the minimum level of the in-
dex.

A second set of priors that is assumed to contain in-
formation about future returns are macroeconomic fac-
tors. These variables have been widely used in multi-factor
models and were found to have predictive power [19,20].

The first macroeconomic variable is the daily change in
the US yield curve. This “term spread factor” is measured
as the difference between the long-term riskless interest
rate (benchmark US 10-year government bond) and the
riskless short term interest rate (3-month US treasury bill
rate). Harvey finds that the slope of the term structure
contains information about future economic growth [21].
Campbell finds a direct link between the term structure of
interest rates and excess returns on financial markets [22].
As a consequence, changes in the yield curve influence
expected stock returns, although the direction and the
exact magnitude of this effect depends on the source of
the change in the term structure, i.e. whether the change
was caused by variations in the short or the long-term
interest rate.

The second factor is the “default spread”, which is in-
tended to capture the pervasive influence of the economy-
wide default risk on financial markets. Theoretically, an in-
crease in the expected distress risk of corporations should
increase the required return on equities. We measure the
default spread as the difference between a corporate bond
return series (the US benchmark BAA corporate bond
yield) and a riskless interest rate (the US benchmark 10-
year government bond yield)1. As in the calculation of the
term spread, we use the daily change of the default risk
variable as a prior. This procedure ensures that the rele-
vant information is known to investors at the date of the
VaR measurement.

Finally, the third fundamental variable is the “divi-
dend yield” [22,8]. We compute the changes in the daily
dividend yield series to capture the investors’ expectations
about the dividend payoff in the US stock market. The-
oretically an increase in the dividend yield should reflect
improved earnings.

1 Since the US government has a AAA-rating, this difference
effectively captures expected default risk.
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Table 1. Summary of investigated priors and parameters. The
lower-case letters indicate real or integer values; the capitals
indicate a limited number of choices.

prior symbol

1-day return z1

5-day cumulative return z2

25-day cumulative return z3

100-day volatility z4

differential term structure z5

differential default spread z6

differential dividend yield z7

model parameter

maturity occupation level nm

number of child nodes nc

node creation algorithm A

weighting type Tw

weighting factor λ

model type Tm

reverse model restart interval tr

feedback mechanism flag F

5.2 Model parameters

As indicated in previous sections, the tree-structured con-
text model uses a lot of parameters, for which an optimal
combination must be empirically derived.

Table 1 gives an overview of the priors available for
training and the parameters used. The “maturity occu-
pation level” describes the maturity criterion: a context
class node splits whenever the number of associated sam-
ples exceeds this level. The “number of child nodes” in-
dicates how many new nodes are created when a node
has reached the maturity level. The “node creation al-
gorithm” can be any of the three algorithms described
in Section 3.2 (random, fast min-max and full min-max).
The “weighting type” can be either absolute or relative,
as described in Section 2.5. The “weighting factor” corre-
sponds to the base λ of the weighting function w(δt) = λδt .
The “model type” can be either parametric (Gaussian) or
non-parametric (historical). The “reverse model restart
interval” indicates the period after which the model is
completely rebuilt, by training using the observed sam-
ples in reversed order; a value of ∞ indicates that this
never happens. Finally, the “feedback mechanism flag”
describes whether the feedback mechanism is applied, see
Section 3.3.

5.3 Results

A global optimization of all parameters for every com-
bination of h ∈ {1, 5, 25}, p ∈ {0.01, 0.05}, and for ev-
ery combination of priors is not achievable in acceptable
time using an exhaustive search algorithm. Therefore, in
a first stage, a limited set of parameter combinations was
derived using trial and error. This set is summarized in

Table 2. Exhaustive parameter optimization space.

parameter values

nm 100, 200, 300, 500, 1000

nc 2

A random, fast min-max, full min-max

Tw relative

λ 1, 0.9995, 0.999, 0.995, 0.99

Tm Gaussian, historical

tr 100, 200, 500, 1000, ∞
F yes, no

Table 2 and is used for an exhaustive search in the sec-
ond stage. During the parameter optimization stage, all
seven priors are included for building the contexts. The
table already shows that using more than 2 child nodes in
the splitting stage produced no significant improvement,
that relative weighting consistently outperforms absolute
weighting, and that only high weights are interesting com-
pared to the RiskMetrics approach.

A fundamental problem in interpreting the numerical
results is the joint evaluation of the five numerical criteria
m̄, m+, χ2, L and C. For the first three criteria, confi-
dence intervals can be numerically derived based on the
assumption that the results are modeled correctly. The
two-sided 92% confidence for m̄ is given by [0.783, 1.22]
and [4.52, 5.47] for the case where p = 0.01 and p = 0.05
respectively. Furthermore, Pr[m+ ≤ 5] = 96.84% and
Pr[m+ ≤ 14] = 91.58% for p = 0.01 and p = 0.05 re-
spectively. Finally, the one-sided 95% confidence interval
for χ2 is given by [0, 124.34]. The other two criteria, L
and C, should both be as low as possible. All criteria in-
fluence each other, so they should be evaluated simultane-
ously. This discussion questions the fundamental goal of
the VaR.

Optimizing a set of parameters in this way is very sen-
sitive to data snooping, since it is not clear how robust
the optimal combination of parameters will be for mod-
eling the values of other financial instruments or other
periods.

5.3.1 Parameter optimization

For each combination of p and h, Figure 1 plots the loss
L versus mean m̄ using the parameter combinations from
Table 2, except that only historical modeling is used. Dif-
ferent marks are used for each splitting algorithm and the
simulated RiskMetrics result is also shown on each plot.
For each of the six cases, a combination of parameters is
available producing acceptable results, i.e. m̄ is close to
the expected value and L is relatively low. On average,
better results are obtained for a 1% VaR than for a 5%
VaR, so historical context modeling is better for solving
the fat tail problem. Also, better results are obtained for
shorter horizons; this is mainly due to the fact that most
priors represent short-term dynamics so they do not carry
long-term information. Comparing context modeling to
RiskMetrics, significantly better results are obtained for
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Fig. 1. For each combination of h ∈ {1, 5, 25} and p ∈ {0.01, 0.05}, a plot shows the loss L(×10−3) versus the mean m̄ for
every parameter combination (only historical modeling). The dotted lines represent the 92% confidence interval for m̄. The
RiskMetrics-based approach is marked with a “←”. All priors are included.
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Fig. 2. A typical course of the log return, the RiskMetrics based VaR and the VaR based on context modeling for the case
p = 0.01 and h = 1. Note the difference between the two VaRs, especially before and after sample 7421 (October 1997 crash).

the (h = 1, p = 0.01) and the (h = 5, p = 0.01) case,
whereas significantly worse results are obtained for the
(h = 25, p = 0.05) case. However, remember that the pri-
mary goal of this research was to improve the modeling of
extreme events on a short-time horizon. Surprisingly, the
fast min-max splitting algorithm performs always optimal
or close-to-optimal. In some cases, the full min-max algo-
rithm achieves slightly better results. Probably, the full
min-max approach has more potential but adapts slower
to the presented data. Especially for long horizons, the dif-
ferences between the splitting algorithms become larger.

Table 3 presents numerical results using the optimal
parameter combination for each of the six cases. The best
m̄ for each case is printed in boldface. If no context mod-
eling is applied, weights based on the RiskMetrics method
are used, i.e., λ = 0.94 if h = 1, λ = 0.95 if h = 5 and
λ = 0.97 if h = 25. If optimal parameters are used for ev-

ery case, historical context modeling achieves the best re-
sults with respect to the mean m̄. However, the maximum
m+ and χ2 statistic are also often higher. The greatest
improvements are to be expected for short horizons and
low probabilities. This is because the priors reflect short-
term behavior and because the non-parametric approach
is a good solution for the fat tail problem. For a 1% VaR,
Gaussian context modeling or historical modeling with-
out contexts does not improve the results compared to
the RiskMetrics based approach, but the real improve-
ment lies in the simultaneous application of both context
and historical modeling.

Figure 2 shows the typical behavior of the log return
and two VaR estimates for sample 7000 to 7500 for the
case p = 0.01 and h = 1 and using the optimal param-
eters from the previous table. The expected number T
of returns exceeding the VaR is 5. The plot shows a big
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Table 3. Numerical results on S&P500 (without 1987 crash)
using Gaussian and historical modeling and optimal param-
eters. Key: “CM” = context modeling, “NC” = no context
modeling (using RiskMetrics weights), “C” = context model-
ing, “Tm” = model type, “G” = Gaussian, “H” = historical.
For every combination of h and p, the best m̄ results are marked
in boldface.

CM Tm m̄ m+ χ2 L(×10−3) C

Case: h = 1, p = 0.01

NC G 1.73 5 52.1 0.18 1.96

NC H 2.59 5 222.6 0.23 1.93

C G 1.53 6 95.81 0.20 1.97

C H 1.08 6 42.82 0.12 2.37

Case: h = 1, p = 0.05

NC G 5.44 9 20.9 0.37 1.41

NC H 6.37 10 40.5 0.38 1.40

C G 4.64 13 83.85 0.38 1.43

C H 5.03 14 115.84 0.38 1.42

Case: h = 5, p = 0.01

NC G 1.53 5 54.7 0.23 4.34

NC H 2.80 6 384.0 0.44 4.10

C G 1.44 13 571× 106 0.40 4.78

C H 1.00 8 2.32 × 103 0.23 5.62

Case: h = 5, p = 0.05

NC G 5.83 13 31.9 0.85 3.11

NC H 6.51 11 57.9 0.92 3.09

C G 5.71 21 1.04 × 106 1.40 3.29

C H 4.92 16 956.02 1.13 3.52

Case: h = 25, p = 0.01

NC G 0.73 5 55.9 0.11 8.03

NC H 2.83 9 393× 103 0.45 7.32

C G 1.22 13 2.29 × 109 0.78 10.14

C H 0.98 12 39.3 × 106 0.54 11.17

Case: h = 25, p = 0.05

NC G 5.47 17 22.0 × 103 1.28 5.74

NC H 7.15 19 47.8 × 103 1.34 5.64

C G 5.02 26 7.42 × 109 3.92 7.18

C H 5.00 19 261× 103 3.51 7.46

qualitative difference between the two VaR estimates. The
RiskMetrics based VaR achieves a bad number of VaR ex-
cess returns (17 times) and is characterized by its slow
decay in periods of low volatility, its consequent misses of
extreme negative returns and its sudden raise immediately
after those extreme situations. The context modeling ap-
proach achieves a better number of VaR excess returns (8
times), a better non-stationarity reduction with respect to
the VaR excess, but also a very irregular behavior, caused
by the constant change of context class. This VaR course
is counterintuitive to the notion of slowly varying risk and
might be interpreted as a sign of bad modeling. It is an
inherent consequence of the modeling approach, though it
could be improved if more data were available for train-

Table 4. Optimal parameters and their sensitivity for the case
p = 0.01 and h = 1.

parameter value sensitivity

nm 200 +

nc 2 −
A fast min-max +

Tw relative +

λ 0.99 +

Tm historical +

tr 200 −
F no −

Table 5. Optimal priors if the number of priors np is limited.

np z1 z2 z3 z4 z5 z6 z7 m̄ L(×10−3)

0 - - - - - - - 1.08 0.16

1 - - - X - - - 1.98 0.16

2 - - - - - X X 1.00 0.12

3 - - X - X X - 1.00 0.14

4 - X - - X X X 1.02 0.14

5 X X - - X X X 1.00 0.14

6 X X X X X - X 1.07 0.15

7 X X X X X X X 1.08 0.13

ing. The October 1997 crash is not predicted at all by the
RiskMetrics approach: the VaR slowly decays before the
crash and rises immediately after it. The context modeling
VaR on the other hand repeatedly predicts more and more
returns of high risk as time continues towards the crash.
Immediately after the crash, a low VaR is predicted, indi-
cating the danger of high loss is over. This indicates that
the context model senses an upcoming period of higher
risk and falls back to safe behavior shortly after it.

Table 4 gives the optimal parameters and the sensitiv-
ity to that parameter for the (h = 1, p = 0.01) case. It is
important to note that because of the context modeling,
higher weights can be used. Also, the fast min-max per-
forms best, though the difference with full min-max and
random splitting is small.

5.3.2 Importance of priors

During the parameter optimization stage, all priors were
available to build the contexts. However, not all of them
are equally important so every possible combination of
seven or less priors is investigated. For the (h = 1, p =
0.01) case, Table 5 presents which priors produce the best
results if only a limited number of priors np were to be
used. The differential dividend yield, the differential de-
fault spread, the differential term structure and the 5-day
cumulative return show to have the most predictive power.
However, as the number of priors np increases, not always
the same priors are selected. This indicates that there is a
lot of mutual information between the priors, but this is
difficult to quantify and analyze.
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Table 6. Numerical results on S&P500 (1987 crash included)
using Gaussian and historical modeling for the (h = 1, p =
0.01) case. The parameters were not optimized but carefully
chosen based on previous experiments. Key: see Table 3.

CM Tm m̄ m+ χ2 L(×10−3) C

NC G 2 5 120.9 0.75 2.00

NC H 2.62 5 231.4 0.76 2.13

C G 2.03 9 24.3× 103 0.92 1.97

C H 1.43 8 2.29× 103 0.73 2.51

5.3.3 Parameter robustness

Many parameters are used in the model and they need
to be optimized using only one data series. The presented
optimal results are sensitive to the problem of data snoop-
ing. The question remains whether parameter values, op-
timized from the past, will remain good parameters in the
future.

To investigate this problem, we performed a limited
experiment by independently optimizing the parameters
on two separate time intervals: the first 6000 samples and
the last 2000 samples. Though the data series clearly show
to be non-stationary when comparing these periods, the
results of the experiment show that the optimal values are
almost identical and that only the splitting algorithm dif-
fers. This is an indication that the parameter optimization
procedure is reasonably robust.

5.3.4 The 1987 crash test

Some numerical results for the (h = 1, p = 0.01) case
including the 1987 crash data is shown in Table 6. The
parameters for the context modeling were not optimized
but chosen based on previous experiments; if no context
modeling is applied, λ = 0.94.

When comparing the historical context modeling with
the classical approach, we see an improvement in the mean
m̄ and the loss L, but the maximum m+, the χ2 and
the cost C deteriorate. Several of these measures, espe-
cially m+ and χ2, are non-linear and their values depend
mainly on the extreme values. The extremal behavior is
mainly concentrated in the period around the 1987 crash.
The averaging criterium m̄, which is improved by context
modeling, does not suffer from this aspect.

6 Conclusion

This paper presents some results of applying context mod-
eling, a state-of-the-art technique in data compression,
to the field of financial modeling and risk analysis. The
goals of both data compression and financial modeling are
shown to be similar, but because of the limited number
of data samples and the large presence of useful priors,
some adaptations must be added to the modeling. The
partitioning of the state space of priors into separate con-
text classes is achieved by a growing tree-structured vec-
tor quantization algorithm. An optimal combination of

parameters is exhaustively searched for the S&P500 US
stock index, covering more than 30 years of data, but omit-
ting the 1987 crash. Multiple evaluation criteria are used
for this purpose. Though the approach is very universal,
the task of VaR prediction was used to show one possi-
ble application. The results show that, for low probability
VaRs and short horizons, significantly better predictions
are obtained using historical context modeling compared
to the RiskMetrics approach. The strength of the approach
lies in the combination of introducing contexts and non-
parametric modeling. In contrast with the RiskMetrics ap-
proach, the October 1997 crash was anticipated in time,
and the model recovered from the crash much faster.

We are grateful to Wilfried Philips from Ghent University (Bel-
gium), for his encouraging ideas, and Jeroen Van Overloop, for
introducing this interesting subject.
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